Factsheet

Urban consolidation centres
This paper was prepared by:
SOLUTIONS project
This project was funded by the Seventh Framework Programme (FP7) of the European Commission

www.uemi.net

The graphic design was prepared by Barbara Lah

Berlin, 2017

UEMI Secretariat

www.uemi.net
secretariat@uemi.net

Oliver Lah
+49 (0)30 2887458-16

The project has received funding from the European Union’s Seventh Framework Programme and Horizon 2020 under the grant agreements no 604714 (SOLUTIONS) and no 723970 (FUTURE RADAR)
Urban Electric Mobility Initiative (UEMI) was initiated by UN-Habitat and the SOLUTIONS project and launched at the UN Climate Summit in September 2014 in New York. UEMI aims to help phasing out conventionally fueled vehicles and increase the share of electric vehicles (2-, 3- and 4-wheelers) in the total volume of individual motorized transport in cities to at least 30% by 2030. The UEMI is an active partnership that aims to track international action in the area of electric mobility and initiates local actions. The UEMI delivers tools and guidelines, generates synergies between e-mobility programmes and supports local implementation actions in Africa, Asia, Europe and Latin America.

SOLUTIONS aims to support the exchange on innovative and green urban mobility solutions between cities from Europe, Africa, Asia and Latin America. The network builds on the SOLUTIONS project and brings together a wealth of experience and technical knowledge from international organisations, consultants, cities, and experts involved in transport issues and solutions.

The overall objective is to make a substantial contribution to the uptake of innovative and green urban mobility solutions across the world by facilitating dialogue and exchange, promoting successful policy, providing guidance and tailored advice to city officials, fostering future cooperation on research, development and innovation.

SOLUTIONS_UEMI supports urban mobility implementation actions that contribute to the Paris Agreement and the New Urban Agenda. Sustainable energy and mobility can make positive contributions to a number of policy objectives, nationally and locally. In particular in cities there is a great potential to create synergies between for example safety, air quality, productivity, access and climate change mitigation. A UEMI resource centre will provide opportunities for direct collaboration on projects focusing on sustainable urban mobility and the role e-mobility can play in it. The UEMI will pool expertise, facilitate exchange and initiate implementation oriented actions.

UN-Habitat, the Wuppertal Institute & Climate Action Implementation Facility jointly host the resource centre for the Urban Electric Mobility Initiative, aiming to bridge the gap between urban energy and transport and boosting sustainable transport and urban e-mobility.
In brief 5
Examples/Measures 6
Results 7
Technical & Financial considerations 7
Policy/legislation 8
Institutions 9
Transferability 9
Case Study: BinnenstadService (Netherlands) 10
In action 11
Results 12
Urban consolidation centres (UCCs) are locations in or near cities where freight vehicles deliver goods. These goods are then “bundled” together into large loads and delivered to numerous points across the city – ideally using clean vehicles. UCCs considerably cut the number of kilometres travelled by larger more polluting freight vehicles, which saves fuel and reduces emissions, making cities cleaner and healthier for citizens.
Some UCCs are private and used by a single transport operator, such as Gnewt Gargo in London (UK); others are public and designed to host several operators working separately, such as Binnenstadtservice in the Netherlands; France’s Elcidis in La Rochelle; and Cityporto Padova in Padova, Italy, where 55 operators share the facilities. Motomachi in Yokohama, Japan, hosts three retailer associations with more than 450 shopkeepers sharing the centre to consolidate their deliveries.
Results

UCCs can significantly cut the number the kilometres travelled by freight vehicles, save fuel, and reduce emissions such as carbon dioxide, nitrogen oxide, sulphur oxide, volatile organic compounds and particulate matter. In cities with fragile and old historic old towns, they can also reduce damage to delicate roads, paths and other infrastructure, and cut noise pollution for residents. A few have been successful in financial terms, but others will need funding support from public authorities after several years of functioning, which can be justified by the positive effects such centres have on the environment.

Technical and financial considerations

Some UCCs may be difficult to establish as they raise the prospect of carriers having to hand over parcels to direct competitors and because of some electric vehicles being unable to carry pallets and large parcels properly. However, the main considerations relate to having available space for the UCCs in or near the city centre. Battery-powered vehicles also impose additional constraints for operations and the premises, and the vehicles are small and can cause congestion in the centres. Parking the vehicles might also be difficult, while some locations may not allow underground parking or have enough space to store and charge the batteries.
Policy/legislation

Strong support from the city is generally necessary for a sustainable public UCC. Agreements between different entities (e.g. the municipality, province, chamber of commerce and local public transport company) can help smooth the way, and strategic plans with local laws on freight mobility are beneficial. Public funding will also help stimulate UCCs.

The Elcidis UCC in France, for example, benefitted from strong political and financial support, mainly from the city of La Rochelle. The UCC started in 2001 and the first Elcidis transport operator was given electric vehicles, free access to the UCC (the rent is paid by the city) and received an operating subsidy. Subsidies came from the EU-funded CIVITAS initiative, from the French transport ministry and from local authorities. In order to minimise the disturbance caused by delivery vehicles (congestion, noise, pollution, damage to streets and sidewalks) local regulations forbade the entry of trucks over 3.5 t into the city. This, of course, was also very favourable to the UCC.
Institutions

Many institutions can help establish UCCs, such as city councils, national ministries and other agencies. In Paris, the city council, the Ministry of Ecology and the French national energy agency helped open many urban logistics centres since 2000. The city - whose aim was to reduce pollution and congestion, and improve urban distribution - provided funding for studies and assessment, and spaces with low rents.

Transferability

This solution is easily transferrable to other freight-intensive facilities. There are already companies that own and run UCCs looking to develop their activities in other towns. The main consideration for other cities looking for UCCs as a solution, however, is having enough space available for unloading, sorting and loading.

Large investments and subsidies will also help in transferability, as will schemes to help small entrepreneurs to start UCCs in cities where the concept does not yet exist – such as the Binnenstadservice in the Netherlands.
Context

In the Netherlands the transport industry together with cities discussed the issue of distribution in city centres for many years, particularly the limited accessibility, increased vehicle movement and congestion, pollution and insecurity. In 2008, a non-profit initiative called Binnenstadservice (BSS) started in the Netherlands, a franchise with independent local entrepreneur in every city acting as franchisees. BSS is now present in 15 Dutch cities.

Case Study: BinnenstadService (Netherlands)
In action

BSS franchisees operate warehouses and distribute goods on behalf of retailers and other organisations in the inner city. Ideally, the local entrepreneur establishes their BSS depot on the premises of an existing warehouse, whose activities do not compete with BSS. This allows the BSS franchisee to start up activities without huge investments, and operate at a low cost because of the combined functions at the warehouse. The estimated costs in a start-up phase are around €10 000 a month.

Goods are unloaded in the warehouse on the edge of a city. From there they are ‘bundled’ into large loads and delivered to numerous delivery points across the city – where possible, with clean vehicles, which the local BSS subcontracts from a local carrier. Empty packaging and other waste, such as paper, returns to the BSS depot. BSS Netherlands, the franchise organisation, provides the IT system for handling orders and labelling.

Shopkeepers do not pay for receiving the goods, only for the additional services provided by BSS, such as collecting packaging. The transport company that delivers the freight to its city centre customers picks up the associated costs.

The BSS concept is voluntary – that is, interested entrepreneurs must approach the franchise to begin operating. However, some conditions could make cities more favourable for locations for BSS depots. For example strict time windows for lorries accessing the city centre, limited loading/unloading facilities and strict environmental conditions (environmental zones), will force transport companies to look for cheaper and easier solutions.

However, BSS needs many retailers to join to create the critical mass to make it successful. In many cities, BSS started with a public subsidy to allow time to encourage the shopkeepers to participate.
Results

In 2010 TNO, a Dutch independent research organisation, conducted a study on the effects of cooperating with BSS through an analysis of two retailers - TWI and Lekkerland - already using the scheme. The results showed that if more cities would use BSS, local authority regulations such as time and vehicle restrictions would no longer hinder carriers and shippers, and would be able to plan transport that is more efficient with larger vehicles. It would also simplify administrative issues by having only one contract with BSS for many cities.

TNO calculated that, based on different scenarios, carriers and shippers could save between 48-72% in kilometres travelled by their vehicles; cut delivery times by 60-70%; reduce costs by 59-71%; and lower their CO2 emissions by 47-71%. The savings vary depending on type of deliveries, the length of a vehicles round-trip, the number of kilometres between city and carriers’ and the number of deliveries in the city.

The more cities that have a BSS depot, the easier it is for shippers or transport companies to make use of the service, because it becomes a common practice. Currently, where BSS does not cover all cities, shippers and transport companies have to deal with different situations and conditions in different cities.

The successful introduction of the concept in other cities also depends on the absence of the “not-invented-here” syndrome. If the new city wants to invent its own solution, it takes some more time to introduce such a scheme. The slowest cases are in cities where a local government is trying to create their own solution (by procurement, for instance).
More Information

Implementing Partners

Supported by

The project has received funding from the European Union’s Seventh Framework Programme and Horizon 2020 under the grant agreements no 604714 (SOLUTIONS) and no 723970 (FUTURE RADAR)